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Abstract 

The holographic method makes use of partially modeled 
electron density and experimentally measured structure- 
factor amplitudes to recover electron density correspond- 
ing to the unmodeled part of a crystal structure. This 
paper describes a fast algorithm that makes it possible to 
apply the holographic method to sizable crystallographic 
problems. The algorithm uses positivity constraints on 
the electron density and can incorporate a 'target' 
electron density, making it similar to solvent flattening. 
The potential for applying the holographic method to 
macromolecular X-ray crystallography is assessed using 
both synthetic and experimental data. 

Introduction 

Holographic methods for X-ray crystallography were 
introduced by Sz6ke (1993) (hereafter paper II) and by 
Maalouf, Hoch, Stern, Sz6ke & Sz6ke (1993). For a brief 
description of the method, let us assume that the electron 
density is known in part of the unit cell of a crystal. The 
complex amplitude of the wave diffracted from that part 
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can then be calculated. This wave is analogous to a 
reference wave in holography. Similarly, the (unknown) 
wave diffracted from the unknown part of the unit cell is 
analogous to the object wave of holography. The 
intensity of the wave diffracted by the full crystal, which 
is proportional to the square of the observed structure 
factors in X-ray diffraction, is then analogous to a 
recorded hologram. It contains the diffracted intensities 
of the known and the unknown parts of the electron 
density separately and, in addition, a term corresponding 
to the interference of the waves scattered from the known 
and unknown parts of the crystal. The interference term 
contains 'phase information' that can be used to recover 
the unknown part of the electron density. In the language 
of holography, the unknown wave can be reconstructed 
and its source can be found. 

Our previous papers contained a detailed description 
of the holographic method and derived some of the 
mathematical properties of the resulting equations. As 
discussed previously, the method has several attractive 
properties. Its most important advantage over other 
methods currently used for calculating electron density 
is that it accommodates in a natural way additional 
constraints on the electron density. It is well known that 
constraints on the electron density, such as its positivity 
or the presence of known solvent regions, are essential 
for the faithful recovery of the crystal structure. Our 
mathematical derivation highlighted the similarity of the 
crystallographic phase problem to a class of inverse 
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problems in mathematics that include those encountered 
in image processing. Following those theoretical guide- 
lines, we have succeeded in producing a computer 
program based on an accurate, fast and practical 
algorithm that will be applicable to problems in 
macromolecular crystallography. In its present form, 
the program contains no knowledge of protein chemistry. 

As opposed to most traditional methods, which are 
expressed in Fourier space, the holographic method was 
designed to solve for the electron density in physical 
space, and it uses known electron density in part of the 
unit cell as a 'target' density. This strategy was shown to 
be successful in a feasibility study by B6ran & Sz6ke 
(1995). The deviations of the recovered electron density 
from the target density are used in a cost function that is 
minimized in parallel with the 'standard' holographic 
cost function (paper II), which depends on the deviations 
of the calculated structure-factor amplitudes from the 
measured ones. The relative magnitude of the two cost 
functions can be controlled by a Lagrange multiplier. 
When the known density is in a solvent region, the 
procedure is similar to solvent flattening. 

A description of the computer program and some tests 
of its application to macromolecular crystallography are 
the subject of the present paper. In their present form, the 
programs 'stand alone', i.e. they are not part of any 
crystallographic program package, but they communicate 
readily with known crystallographic programs. The first 
section of this paper discusses the basic holographic 
equations, the addition of constraints, the actual 
algorithms used and their implementation as the program 
EDEN. The second section describes the application of 
EDEN to some synthetic but realistic problems, in order 
to test the limits and accuracy of the method. A third 
section reports on the application of EDEN to the 
solution of the structure of a mutant of staphylococcal 
nuclease. After summarizing our results, we give some 
programming details about EDEN in the Appendix. 

1. Fast holographic algorithm 

The general description of the holographic algorithm will 
be presented in this section. A more detailed description 
of the algebra and some programming details are 
relegated to the Appendix. 

1.1. The holographic equations and their solution 

The notation in this paper is the same as in paper II, to 
which the reader is referred for more precise definitions 
(Sz0ke, 1993). The electron density in the unit cell of a 
crystal is divided into a known and an unknown part. The 
structure factors of the known part are denoted by R(h).* 

* The notation of R(h) for the structure factors of the known part of 
the structure and O(h) for the structure factors of the unknown part of 
the structure is derived from holography theory. In holography, R(h) 
and O(h) denote the reference and object wave, respectively. 

They are given by 

R(h) = f p~o~(r)exp(2mh.  ~ ' r )dr ,  (1) 
unit cell 

where we use standard crystallographic notation. The 
unknown part of the electron density is described as a 
sum of Gaussian basis functions of equal widths, 
centered on a grid of spacing .T'Ar = (,gx, zay, Az) in 
fractional coordinates, with an unknown number of 
e l e c t r o n s ,  np, in each Gaussian blob (voxel). If the grid 
spacing is sufficiently fine, the electron density of the 
unknown part of the molecule can be well approximated 
by such a superposition of Gaussians: 

P 
Punknow~(r) -~ (zrr/Ar2) -3/2 ~ np exp(--Ir -- rp]2/r/Ar2). 

p=l 

(2) 

The value of 77 determines the widths of the Gaussian 
basis functions. It is chosen to represent a continuous 
electron density optimally. In the algorithm to be 
described below, the unknowns np are obtained by 
minimizing a cost function that measures the error 
between the calculated and measured structure-factor 
amplitudes. (The residual error that results from the finite 
mesh size will be discussed in §2.1.) A derivation 
presented in paper II results in the following formula for 
the structure factors of the unknown part, O(h): 

P 
O(h) = ~ np exp[--O(zrArl.~rhl)2]exp(2mh • .T'rp). 

p=l 

(3) 

The square of the absolute magnitude of the structure 
factors of the crystal, IF(h)l 2, can be related to the 
measured X-ray diffraction intensities in a known way. 
We will assume that the appropriate normalization has 
been done and, therefore, the values of IF(h)l 2 are known 
from experiment. They satisfy the equation 

IF(h)l 2 = Ie(h) + O(h)l 2 

= IR(h)[ 2 + e(h)O*(h) + R*(h)O(h) + IO01)12. 

(4) 

When the expansion of the unknown density is 
substituted from (3), equation (4) becomes a set of 
quadratic equations in the unknowns, np. In our current 
algorithm, the equations are linearized by initially 
neglecting the IO(h)[ 2 term. The linearized equations 
are then solved using a (linear) conjugate gradient 
algorithm (Goodman, Johansson & Lawrence, 1993). 
After the linearized solution is obtained, the equations 
are iterated by adding the recovered O(h) to the known 
part. This is an iterative solution of (4). The number of 
e q u a t i o n s ,  N h, is usually not equal to the number of 
unknowns, P; also, the equations are ill conditioned (see 
paper II). Under these conditions, the best (quasi-) 
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solution is the one that minimizes the discrepancy 
function, 

= . - -  n M,(h) - H ( h )  , (5) 
h Up=l 

where H ( h ) ~  IF(h)[ 2 -  IR(h)l 2, the set of positive 
weights w'(h) will be determined below and Mp(h) is 
the linear 'encoding' operator, corresponding to the set of 
linearized equations (4). Mp(h) is given by 

Mp(h) = exp[-o(zrArl~rhl)2][R(h) exp(-2m~ • .T'rp) 

+ R*(h)exp(2mll..T'rp)]. (6) 

The weights w'(h) 2 are determined by two considera- 
tions. First, we divide each term of the discrepancy 
function feden in (5) by [[F(h)l + [R(h)[]; we note that 
IF(h)[ 2 -  IR(h)[ 2 divided by this factor yields a first- 
order term, IF(h) [ -  [R(h)]. This division, therefore, 
increases the curvature of the discrepancy function 
around its minimum. Accordingly, we set w'(h)2= 
w(h)2/[[F(h)[ + [R(h)l] 2. Second, values of h for which 
IR(h)[ << IF(h)[ correspond to small singular values of 
the operator in (4), giving rise to numerical instability of 
the algorithm. The singularity is eliminated by using the 
weights {2lR(h)[/[[F(h)[ + ]R(h)]]} in the discrepancy 
function. Theoretical reasons for the above considera- 
tions were discussed in detail in paper II. 

In summary, the resulting discrepancy function used in 
our calculations is 

feden -- ~ w(h)2{[R(h)O*(h) + R*(h)O(h)] 
h 

× [IF'(h)l + IR(h)l] -1 - [IF'(h)l - IR(h)l]} 2, (7) 

with regularizing weights 

w(h) 2 = {21R(h)l/[IF'(h)l + IR(h)l]} 2. (8) 

In addition, the measured structure-factor amplitudes are 
modified to 

If'(h)l = IF(h)l exp[-80(rrzarl~'rhl)2], (9) 

where the parameter /~ is of order unity. Such 
'apodization' adjusts the resolution of the measured 
diffraction pattern to the finite resolution of the Gaussian 
basis set used in the solution. It is equivalent to an 
appropriate smearing of the electron density of the 
protein. Such smearing is needed in order to be able to fit 
the high-resolution reflections in a mathematically stable 
manner. 

1.2. Addition of constraints 

The solution of (5) is not unique: this is an expression 
of the well known phase problem of crystallography 
(paper II). The equivalent mathematical statement is that 
an arbitrary element of the null space of the encoding 

operator, Mp(h) in (6), can be added to any vector n v that 
minimizes the cost function (5). However, it is well 
known that additional information, in the form of 
constraints or restraints, can reduce the arbitrariness of 
the solution. Although both constraints and restraints will 
be incorporated into the algorithms, we will use the term 
constraints in all cases. 

Three different types of constraint will be discussed. 
The first constraint is the positivity of the electron 
density. There are two different ways to make use of 
positivity. If the electron density is believed to be 
substantially correct in the 'known' part of the unit cell, 
one can demand that only a positive electron density be 
added everywhere; this will be denoted 'completion' 
mode. In contrast, the program can be used to correct the 
electron density even in the 'known' region. In this 
'correction' mode, only the total electron density (the 
sum of the known density and the recovered density) is 
required to be positive. A second kind of constraint is the 
knowledge of the electron density in certain regions. It 
can be, for example, the known part of the molecule, or 
the position and the density of the solvent. In either case, 
a 'target' density can be specified in part of the unit cell. 
This is similar to B6ran's considerations (B6ran & Sz6ke, 
1995). Such constraints are incorporated into the 
algorithm with the help of a cost function, f~pace, that is 
proportional to the square deviation of the calculated 
electron density from the target density and a relative 
weight, or Lagrange multiplier, 2spac e.  Third, the projec- 
tion of np on the null space of the encoding operator (6) 
can be minimized by adding a term proportional to 
IIm[R*(h)O(h)]l 2 with appropriate weights and a 
Lagrange multiplier, 2null. Such a term produces the 
usual quasi-solution of ill conditioned equations with 
minimum norm. 

The first type of constraint, the positivity of the 
electron density, is incorporated directly into the 
conjugate-gradient optimizer by stipulating that the 
solution vector is bounded from below by the negative 
of the known initial electron density (correction mode) or 
by zero (completion mode). 

The second type of constraint, the 'target' density, is 
expressed in terms of the amplitudes of the same basis 
functions as used by the main program. They will be 
denoted by np,target. The cost function, fspace, is expressed 
as 

P 
Apace --" '~'space P ~ Wp2(np - -  np,target) 2" (10) 

p=l 

The Lagrange multiplier, ~space, and the weights, 
fvpZ<_ 1, express the 'strength of our belief' in the 
correctness of the target density: the weights, ~,p, are 
used to emphasize or de-emphasize different regions of 
the target density, while ~'space determines the relative 
importance fspace with respect to feden" The cost function, 
fspace, is in a different space from feden; therefore, it is 
important to normalize them relative to each other. A 
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simple calculation, using the fact that the Patterson 
function is the Fourier transform of IF(h)l 2, Parseval's 
theorem and the approximate locality of the basis 
functions in (2), yield the result that the number of grid 
points, P, is the proper normalization if all the weights, 
t~p 2, are unity. Although our target density covers only 
part of the unit cell, this is still a good approximation. 
The value of the Lagrange multiplier, 2space, that gives 
best results in practical problems is quite small, 0.001- 
0.01, independent of problem size. 

Finally, in the absence of other constraints, a non-zero 
value of 2~u u produces an electron density that is very 
similar to the result of 'Gfibor's reconstruction' or to the 
difference Fourier method. In our test cases, a non-zero 
2nu n did not make much difference, as the conjugate- 
gradient method also tends to find a solution of the 
electron density of minimal norm; indeed, we found that, 
in the absence of constraints, our np tends to the 
difference Fourier solution. The cost function, faun, used 
is 

fnun = 2~un ~ w(h)E({Im[R*(h)O(h)]}/lR(h)l) 2. (11) 
h 

The actual cost function used in the computer program 
is the sum offede n (7),fspace (10)andfnul 1 (11). 

ftotal--'feden +Apace +fnun- (12) 

1.3. A fast algorithm 

The discrepancy function (5) depends on the discre- 
tized electron density, np. We will show that it can be 
calculated using fast Fourier transforms. First, we rewrite 
(3) a s  

P 
O(h) = exp[--rl(rrArl.Trrhl) 2] ~, np exp(2m~ • ~'rp). 

p=l 

(13) 

If the points rp are on a regular symmetry-adapted grid in 
the unit cell, 

rp = Paa/Pa + pbb/Pb + pcc/P~. (14) 

It can easily be seen that 

exp(2m'h..T'rp) = exp[2~ri(hpa/P a + kpb/P b + Ipc/Pc)], 

(15) 

where the components of h are denoted by { h,k,l}. The 
Fourier transform of the solution vector, denoted by n(h), 
can therefore be calculated by the fast discrete Fourier 
transformation (DFF). Defining DFF + in the obvious 
way, we get 

n(h) = DFT+(np) 
P 

= ~_, np exp(2mla • ~'rp) 
p=l 

Pa Pb Pc 
= ~ ~ ~ npexp[2rri(hPa/Pa 

pa=l pb=l Pc=l 

+ kPb/P b + lpc/ec) ]. (16) 

It is easy to see that O(h) can now be calculated by a 
single vector multiplication of length Nh, the number of 
structure factors used. Similarly, the other parts of the 
discrepancy function, (10), (11), and their gradients can 
be calculated by fast discrete Fourier transforms. The 
whole operation can therefore be carded out in a time of 
order P log P. The matrix, Mp(h), of (6) (that is of length 
NhP ) is never calculated and therefore only vectors of 
length P and N h have to be stored. This is the basis of the 
fast algorithm. Its details are presented in the Appendix. 
Mathematically, the fast algorithm outlined above 
depends on the shift invariance of the holographic kernel 
and is equivalent to it. 

Our computer programs minimize the discrepancy 
function ftotal of (12) using a conjugate-gradient 
algorithm developed by one of the authors (Goodman, 
Johansson & Lawrence, 1993). This algorithm is 
especially advantageous in the presence of non-linear 
constraints. By using a 'bending' search method in a 
given direction, several components of the solution 
vector can be constrained in a single search. This is very 
important for the efficient solution of the large problems 
that are routinely encountered in crystallography. The 
algorithm is very robust; we have never observed it to 
fail. Each component of the solution vector, rip, can be 
unconstrained, constrained (from above and/or from 
below), or held fixed. As the calculation proceeds from 
one linearized step to another, the constraining bounds 
may be changed by the program. 

Multiple minima of the cost function (12) are 
expected, especially in the presence of constraints. In 
such a case, conjugate-gradient minimizers may be far 
from optimal. Our general method lends itself easily to 
other methods of searching for global minima, such as 
simulated annealing, but these methods have not been 
pursued so far. 

1.4. Programs and options 

There is a suite of three programs, BACK, EDEN and 
REGRID (together with some utility programs); their 
general properties are described in this section. More 
details are given in the Appendix. The programs readily 
communicate with known crystallographic programs via 
standard input and output files. The inputs to the main 
program are the measured structure-factor amplitudes, as 
well as complex structure-factors calculated from the 
partial model. Also, the standard crystal parameters have 
to be defined, together with certain computational 
parameters. For example, the user should define the 
desired resolution of the data to be read and the fineness 
of the grid on which the electron density is to be 
calculated. In fact, three different resolutions can be 
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distinguished. One is the inherent resolution of the data, 
equivalent to an effective crystallographic B value. It can 
be adjusted by using an appropriate value of 8 in (9). The 
second is the resolution of the solution grid and the 
corresponding value of ;7 in (3). The third is the 
maximum resolution of the structure factors used in the 
summation for the determination of the discrepancy 
function (12). The programs' final output is an electron- 
density f'de. Also, all three of our suite of programs 
employ an intermediate binary file format for con- 
venience in studying intermediate results. 

The preprocessor program, called BACK, produces a 
vector, np, of size P = PaPbPc, corresponding to the 
electron-density expression in (2). This is an optimum set 
of positive Gaussian electron densities, given a set of 
complex structure factors, F~ow,. This program also uses 
Goodman's (Goodman, Johansson & Lawrence, 1993) 
conjugate-gradient algorithm but, instead of minimizing 
the discrepancy function in (12), it minimizes 

fback -- ~ IFknown exp[-Sr l (zrArl~ ' rhl )  2] - O(h)l 2, 
h 

(17) 

where the symbols are as defined above. The main use 
for BACK is to transform the known electron-density 
information into Gaussian basis function amplitudes, rip, 
in order to use them for setting limiting constraints on the 
magnitude of the solution in the main holographic 
program and for setting up a 'target' density forf~pace in 
(10). In fact, BACK can replace inverse Fourier trans- 
forms (for whatever purpose those are used) and because 
positivity is ensured everywhere, the well known 
problems caused by missing data and by the termination 
of Fourier series are avoided. Also, given an electron 
density in terms of Gaussians on a grid, the complex 
structure factors can be calculated without additional 
error, using FORTH, a program that is the inverse of 
BACK. 

The main program, EDEN (for electron density) solves 
the holographic equations by minimizing ftotal of (12). 
The program reads in the reflection data sets to the 
prescribed resolution. It reconciles the reflection data, 
taking only reflections that are present in the measured 
data. As discussed in paper II, the gridding resolution has 
to be close to that of the data, otherwise either resolution 
is lost or the equations become underdetermined. There 
are two options for establishing the solution grid: a 
simple grid or a body-centered grid. The default value of 
17 in (2) and (6) is 0.36 for a simple grid and 0.28 for a 
body-centered grid. Both these values correspond 
roughly to the Rayleigh resolution criterion. The 
advantage of a body-centered grid is that, at a cost of 
only twice the number of grid points, it provides a more 
uniform coverage of space and it has less preference for 
the directions of the crystal axes. On trigonal or 
hexagonal grids, a hexagonal close-packed grid would 
have to be used. This has not yet been implemented in 

EDEN.) Ideally, the same grid spacing should be used in 
all crystal dimensions. In order to approximate this 
equality, we have used a FFI" based on products of 
powers of 2, 3 and 5, in place of the usual 2-based FFr.  
The program calculates the actual grid spacing used in 
each crystal direction by dividing the length of the unit 
cell by the desired grid spacing, ea "" lal/Ar etc. and 
setting it to be the nearest integer that can be factored by 
2, 3 and 5. For relatively high resolution studies, the grid 
spacing in any of the three crystal directions is within 
--, 10% of the desired resolution. 

EDEN can be used to complete a structure or it can be 
used to correct a structure. In completion mode, the 
program attempts to minimize the discrepancy, (12), 
using only positive Gaussians, np > O. In correction 
mode, a 'known' set of Guassian amplitudes, np,know n, 
has to be supplied and the program forces the sum of 
np+ np.~own to be positive. This allows the program to 
correct the known electron density and also satisfy the 
positivity criterion. In addition, any number of variables 
can be further constrained to have an unchangeable value 
by supplying masks in real (grid) space. Note the 
distinction between the absolute constraints mentioned 
here and the 'soft' ones introduced in (10). 

Once the problem is set up, the 'inner loop' that uses 
the constrained conjugate-gradient algorithm is started. It 
solves the linearized form of (4) by minimizing ftotal of 
(12). The inner loop has its own stopping criteria, 
described by Goodman, Johansson & Lawrence (1993). 
In practice, the algorithm most often stops when the 
value of the gradient decreases 'enough' (to less than a 
preset fraction, usually 1%, of its starting value). When 
the inner loop stops, the recovered density is added to 
that found previously, the values of the minimum 
constraints are changed accordingly, the density found 
is Fourier transformed, apodized [see (3)] and added to 
the reference, R(h). The progress of the 'outer loop' of 
the solution is monitored by the value of the discrepancy, 
ftotal, and by the crystallographic R factor. The solution is 
deemed to be complete if the value of the discrepancy 
stops decreasing or if the crystallographic R factor has 
fallen to a predetermined value. It should be noted that 
EDEN uses the full electron density to calculate the 
structure factors. Consequently, the crystallographic R 
factor in EDEN is different from the conventional R 
factor, which is calculated using structure factors 
computed from a model. 

When the value of 2spat ~ is set to be non-zero, a 'target' 
electron density has to be supplied. Such a target density 
can be that of a solvent region or the density in part of the 
protein that is particularly well known. Most commonly, 
we used as target the region of the crystal that was known 
to contain only disordered solvent and we assigned it a 
target electron density of 0.33 ,~-3. In order to prepare a 
sufficiently conservative solvent region, the (tentative) 
model of the protein is transformed to physical space 
using BACK, with 8 = 4 [equation (9)], for example. 
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Such a high 8 smears the protein very strongly and all 
regions whose electron density was less that "-~ 10% of 
the maximum could be considered to be solvent regions. 
The same procedure was used to define the solvent 
masks. 

The third program, REGRID, is a post processor. It 
uses (2) to calculate the electron density on a fine grid, in 
the desired part of the unit cell, from a given solution, np. 
Insofar as a body-centered grid is used in EDEN, the 
simple and intercalated grid points are reconciled on the 
fine grid. REGRID also uses fast Fourier transforms to 
accomplish its task. 

2. Testing the applicability of the holographic 
method to macromolecular crystallography using 

synthetic data 

Our first tests of the holographic method, as implemented 
by EDEN, used synthetic data, i.e. data computed from a 
protein model. Calculated structure-factor amplitudes 
that are used in place of experimental data will be 
referred to as Ftrue data. Using Ftrue data allows us to test 
the holographic method on realistic data, but under very 
controlled conditions. It allows us to study the sensitivity 
of the holographic method to well def'med sources of 
error in the data and to problems in treating experimental 
data. Also, the use of Ftrue data circumvents the phase 
biasing problems often associated with omit maps 
(Hodel, Kim & Brtinger, 1992). Finally, the phases 
corresponding to the Ftrue amplitudes are known, and 
therefore the results of tests using the holographic 
method can be quantitatively evaluated either in 
reciprocal space or in real space. 

All of the initial testing of the holographic method was 
carried out using the structure of the 207 residue sweet- 
tasting protein thaumatin (Ogata, Gordon, de Vos & 
Kim, 1992). Structure-factor amplitudes were calculated 
from the thaumatin model placed in a P212121 cell wi[h 
cell parameters of a = 74.44, b -- 53.77, c = 52.32 A. 
An individual isotropic temperature factor of 14.0 ~2 was 
specified for all atoms of the thaumatin model. The 
primary goals of the synthetic data experiments were to 
understand the inherent inaccuracies of the method due 
to expansion of the electron density into a finite number 
of basis functions, to make sure the holographic method 
could cope with imprecision in experimental data and in 
the atomic positions of the 'known' model, and to give us 
some understanding of how accurately the F(000) term 
and scale factor need to be determined. 

As mentioned above, for the tests using synthetic data, 
we unambiguously knew the 'true' structure factors, and 
were able to assess quantitatively the quality of the 
recovery either in reciprocal space or in real space. In 
reciprocal space, the results were evaluated by calculat- 
ing the weighted average phase difference between the 
calculated ( 'c ')  structure factors produced by EDEN and 
the 'true' structure factors corresponding to the ideal 

structure: 

} i/2 
Acp -- E IFtrue(h)l{q)true(h) - q)c(h)}2/E IFtrue(h)l 

h h 

(18) 

In real space, the electron density resulting from the 
holographic reconstruction was evaluated by calculating 
the variance of the electron-density error in the unit cell, 

A p =  p~(np -- n;) 2 ~(np)  2 , (19) 

where np and n'p are the two sets of electron densities (in 
units of electrons/voxel) to be compared. 

All of the electron-density maps described in ~2.2 and 
2.3 were prepared using the EDEN software package in 
'completion' mode, as described above. The electron 
density recovered for the omitted parts of the model was 
also qualitatively evaluated by direct viewing of the 
density using the PSFRODO software package (Jones, 
1985; Pflugrath, Saper & Quiocho, 1984). 

2.1. Limitations due to grid resolution 

One basic limitation on the achievable accuracy of the 
recovered electron density is its representation in terms 
of basis functions, of a fixed shape, on a fixed grid. In the 
present work, we used a Gaussian basis function 
expansion (2) and its Fourier transform (3). While other 
basis functions could also be used, the obvious advantage 
of Gaussians is that the positivity of the electron density 
is easily ensured by making the amplitude of each 
Gaussian positive. To test the effect of describing the 
electron density in terms of these basis functions, the 
structure factors calculated from the thaumatin model 
were apodized to a 2.5 A data resolution, BACK was used 
to calculate the corresponding electron density on a 
body-centered grid and FORTH was then used to 
recalculate structure factors. We then compared the 
starting and ending structure factors by calculating the 
average phase difference and the crystallographic R 
factor. These results are shown in Fig. 1 (a) as a function 
of the grid spacing, at a constant data resolution. The 
phase error is seen to be approximately proportional to 
the grid spacing. A similar study was made on the 
influence of 17 in (2), while keeping the product, 8r/[of 
(9)], constant. The results of this study are shown in Fig. 
l(b). It is clear from these results that the discrete grid 
size limits the accuracy of the phase recovery quite 
severely, while the actual value of 17 is much less 
important, at least within reasonable limits. We were 
quite surprised by the large values of the phase error 
obtained. 

Two other tests were carried out to explore further the 
implications of solving for the electron density on a 
discrete grid. In the first test, we generated an electron 
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density that is a sum of a set of positive Gaussians 
centered on the grid points, with random positive 
amplitudes. The structure factors corresponding to this 
density were calculated using FORTH and the original 
density was then recovered using BACK. As expected, 
the resulting density error was small (Ap ___ 1%). We 
then changed the electron density on the grid points by 
adding additional random densities of 10 and 20%, 
respectively. The additional density led to phase changes 
in the structure factors of --'5.7 and 12 ° (---0.1 and 
0.2 rad), respectively. This observation verified that Atp 
is indeed proportional to Ap, at least for modest changes, 
and that the weighting of Atp by the amplitudes of the 
structure factors, IFtrue I, is indeed the proper one. In the 
second test, w e  displaced the Gaussians from the grid 
points by "~ 10 and 20% of the grid spacing, respectively. 
Again, we calculated the structure factors (directly) and 
recovered the original density using BACK. This time, 

there were large phase errors generated, -'~ 16 and 33 °, 
respectively, while A p  between the original density and 
the recovered density was only -,- 10 and 20%. It was also 
observed that the recovered electron density tends to be 
attracted to the grid points. These results suggest that the 
main source of the phase errors in Figs. l(a) and (b) is 
the failure of the basis functions on the grid to represent a 
general electron-density function. This property of basis 
functions on a discrete grid is well described in the 
literature (Stark, 1987); it carries over even to wavelet 
expansions (Daubechies, 1992.) Note also that in the 
second test the proportionality constant between the 
phase error, Atp, and the density error, Ap, is much larger 
than in the f'trst test. The second test is a more realistic 
simulation of reality, since electron density does not 
usually lie on a grid, and we conclude that a phase error 
of ---30 ° corresponds to an acceptable density error of 
-'~ 10%. 
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Fig. 1. Synthetic data from the thaumatin model, at 2.5A data 
resolution, were used to evaluate the phase errors resulting from 
modeling electron density on a finite grid. The weighted average 
phase difference (dark circles) and the crystallographic R factor (light 
circles) are shown as (a) a function of the grid spacing, and (b) as a 
function of the width of  the basis function, r/. 

2.2. Recovery of part of the structure 

The first set of tests using the synthetic data consisted 
in deleting residues from the N terminus of the thaumatin 
model and using the holographic method to recover the 
electron density corresponding to this omitted region. In 
all tests, a body-centered solution grid was used, with a 
grid spacing of. 1.8A and r /=  0.28. Data between 
infinity and 2.0A resolution were used. Fig. 2 shows 
the weighted average phase difference between the 
structure factors calculated from the intact thaumatin 
model and the structure factors calculated from the 
truncated thaumatin model before (open circles) and after 
(close circles) EDEN was used to recover the omitted 
portion of the model. As can be seen in this figure, the 
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Fig. 2. The recovery of missing residues from the thaumatin model was 
evaluated by calculating the weighted average phase difference 
between the Ft~ e data and the structure factors corresponding to the 
truncated model, before and after EDEN was used to recover the 
missing electron density. Open circles show the phase difference, 
before recovery, between the truncated model and the complete 
model. Closed circles show the phase difference after an E D E N  run 
without a solvent mask; closed squares show the phase difference 
after an E D E N  run with a solvent mask. 
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use of the holographic method results in a clear 
improvement in the phases, especially when the omitted 
region represents approximately one third or less of the 
scattering matter. This phase improvement corresponds 
to improvements in the electron density recovered for the 
omitted parts of the model. Fig. 3(a) shows a 
representative sample of the electron density recovered 
for an omitted portion of the thaumatin model. For 
comparison purposes, an unweighted (F~e - Fc) differ- 
ence Fourier map is also shown in Fig. 3(b). The map 
produced by EDEN has fewer breaks in electron density, 
as well as fewer pieces of spurious density, than the 
corresponding (Ftrue- Fc) Fourier map. Although the 
goal of this exercise was not to compare the holographic 
maps with difference Fourier maps, it is clear from these 
results that the holographic technique has the potential of 
producing useful electron-density maps. Fig. 3(a) also 
illustrates an interesting characteristic of the holographic 
maps. Frequently, the electron-density map producd by 
EDEN is slightly displaced with respect to the model. We 
believe that this phenomenon is due to the difficulties in 
gridding electron-density maps that were described in 
§2.1. 

We have also tested the effects of solvent masks on the 
recovery of omitted regions of thaumatin. A solvent 
mask was generated as described in §1.4 and EDEN was 
run in completion mode at a data resolution of 2.0 ~, and 

gridding resolution of 1.8 A. The effect on the electron- 
density recovery brought about by the use of solvent 
masks is illustrated by the squares in Fig. 2. Clearly, the 
solvent mask is very helpful in the density recovery. A 
representative sample of the density recovered after 
deleting residues 1-120 of thaumatin model is shown in 
Fig. 4(a). The corresponding unweighted difference 
Fourier map (using no solvent mask) is shown in Fig. 
4(b). 

2.3. Sensitivity of the method to errors 

In preparation for applying the holographic technique 
to problems involving experimentally derived data, the 
Ftrue data from the thaumatin model were used to test the 
tolerance of the method to errors in scaling the data, to 
errors in the magnitude of the F(000) term, to Gaussian 
noise in the structure-factor amplitudes and to positional 
errors in the 'known' part of the model. 

The use of the holographic method requires that the 
measured structure-factor amplitudes be placed on an 
absolute scale. The sensitivity of the holographic method 
to the scale factor was tested by varying the scaling of the 
Ftrue data. For each re-scaled data set, EDEN was used to 
recover electron density corresponding to an omitted part 
(30, 60 or 90 residues) of the thaumatin structure. Fig. 
5(a) summarizes the effects on the electron-density 

b 

a) 

(b) 

Fig. 3. A representative sample (residues 
18--23) of the electron density recov- 
ered for the thaumatin model after 
omitting residues 1-60 (out of 207). 
(a) Electron density recovered using 
the holographic method. (b) The 
corresponding electron density calcu- 
lated with standard Fourier techniques, 
using unweighted ( F ~ e - F ~ c  ) co- 
efficients, and contoured at 1.5 tr. 
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recovery brought about by errors in the scaling of the 
data. From these results, it is clear that an incorrect 
estimate of the scale factor can seriously compromise the 
quality of the recovery and, given the difficulties in 
accurately placing a data set on an absolute scale, this 
sensitivity to scaling may prove to be an important 
limitation to the use of the holographic technique. In our 
experience, if high-resolution data are available, a 
Wilson-plot analysis (Wilson, 1949) of the data produces 
a sufficiently accurate estimate of the scale factor for 
purposes of applying the holographic method. Similarly, 
if a model of the structure being worked on is available, 
the experimentally measured structure factors can be 
scaled to structure factors calculated from the model. 
However, in the absence of high-resolution data or a 
reliable model, placing the data on an absolute scale can 
be a difficult problem. Under these conditions, it might 

be necessary to systematically try a range of scale factors 
and empirically choose the scale factor based on the 
quality of the recovered electron density. 

The holographic method also requires an estimate of 
the F(000) term and the effects on the electron-density 
recovery brought about by changes in the magnitude of 
this term are shown in Fig. 5(b). The F(000) term 
specifies the number of electrons in the unit cell. 
Consequently, estimating the magnitude of F(000) 
requires knowledge of the molecular formula, the 
number of molecules in the unit cell and an estimate of 
the solvent content. Our ability to estimate F(000) seems 
adequate for applying the holographic method. Interest- 
ingly, E D E N  is far less tolerant of an overestimate of 
F(000) than of an underestimate, in fact, when a 
relatively large amount of density needs to be retrieved, 
an underestimated F(000) term actually improves the 

~ v (a) 

i 

(b) ' ~  

Fig. 4. A sample (residues 2-7, 35--40) of the 
electron density recovered for the thauma- 
tin model after omitting residues 1-120. 
(a) Electron density recovered using the 
holographic method, using a solvent mask. 
Note that the leftmost of the three strands 
is part of the known part of the model and, 
consequently, electron density for this 
region is not recovered. (b) The corre- 
sponding electron density calculated with 
standard Fourier techniques, using un- 
weighted (Ftrue- F ~ )  coefficients, and 
contoured at 1.5 tr. 
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Fig. 5. The effect on the recovery of electron density corresponding to 
30 (triangles), 60 (circles), and 90 (squares) residues, brought about 
by artificially induced errors in the data. The open and closed 
symbols show the weighted average phase difference before and after 
recovery with EDEN, respectively. The weighted average phase 
difference is used to quantify the effects brought about by (a) errors 
in the factor used to place the data on an absolute scale, (b) errors in 
the magnitude of the F(000) term, and (c) noise in the structure-factor 
amplitudes. 

recovery. This is probably because, by lowering the 
F(000) term, the positivity constraint helps the recovery, 
at least for a model protein. We surmise that a low 
F(000), together with the positivity constraint, prevents 
the recovery of spurious density. 

Noise was added to the data in such a way that the 
noisy intensities would form a normal distribution around 
the true intensity. To do this, the Ftrue structure-factor 
amplitudes were squared to obtain intensities, and a Box- 
Muller transformation (Press, Flannery, Teuolsky & 
Vetterling, 1989) was used to obtain random deviates 
with a normal (Gaussian) distribution around each of the 
correct intensities. The amount of noise in the data was 
adjusted by controlling the width of the normal 
distribution. The noise in the data was assessed by 
computing two noisy data sets using the same parameters 
and calculating the 'emerge(lF[2) ' between them: 

emerge([F,2)--~h [[Fl[2-[F2[2 /(~h 1F212 ). (20) 

The effects of noisy Ftrue amplitudes on the recovery of 
electron density is shown in Fig. 5(c). As can be seen in 
Fig. 5(c), the recovery of electron density is fairly 
insensitive to Gaussian noise in the data, at least within 
the level of noise that might be expected from 
experimental data. 

Finally, we have tested the ability of the holographic 
method to cope with errors in the atomic positions of the 
'known' part of the model. Positional errors were 
introduced by subjecting the thaumatin model to 
constrained molecular dynamics, using the program 
X-PLOR, with the CHARMM force field (Brooks et al., 
1983), and by periodically writing coordinates during the 
simulation. Parts of these coordinates were then used as 
the known region of thaumatin, and used to recover 
density corresponding to omitted parts of the structure. 
The coordinates derived from the dynamics simulation 
were compared with the unaltered coordinates by 
calculating the root-mean-square (r.m.s.) deviation 
between each pair of atoms in the two coordinate 
sets. 

As expected, the accuracy of the 'known' part of the 
structure influences the recovery of the unknown electron 
density. Figs. 6(a)-(c) shows the effect of positional 
errors in the known part of the structure on the phase 
correction brought about by running EDEN. Note that, 
because of the errors in the known part, a perfect 
recovery is not possible. Thus, Fig. 6 also shows the 
maximum possible improvement in phases obtainable, 
given the errors in the structure. As expected, as the 
number of deleted residues increases, the recovery is 
increasingly sensitive to errors in the known part. 
Significant correction of the average phases was possible 
only when fewer than 60 residues were deleted and when 
the positional error in the known part was less than 
0.2A. 
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Fig. 6. The effect of errors in the atomic coordinates of the 'known' part 

of the model was evaluated after deleting (a) 30, (b) 60, and (c) 90 
residues from the N terminus of the thaumatin model. The average 
weighted phase difference before (open circles) and after (closed 
circles) recovery with EDEN is plotted against the root-mean-square 
deviation (A) between the correct thaumatin model and the model 
with the positional errors. Given the errors in the known part of the 
model, a perfect recovery is not possible. The open squares show the 
best possible recovery given these errors. 

3. Experimenting with real data: the structure 
determination of H124L, Pl l7G,  P47G 

staphylococcal nuclease 

Staphylococcal nuclease is a 149-residue enzyme that 
catalyzes the hydrolysis of the phosphate backbone of 
DNA and RNA; this protein has been used extensively to 
study enzyme kinetics and thermodynamics. We have 
obtained a mutant of staphylococcal nuclease with the 
following single-site substitutions: H124L, P l l T G  and 
P47G. The two proline to glycine mutations occur in 
loops and were expected to lead to substantial local 
changes in conformation. As a preliminary test of the 
holographic method using experimental data, we deter- 
mined the structure of this triple mutant, using EDEN to 
calculate all of the electron-density maps. We also used 
the experimental data from this protein to test EDEN's 
ability to recover the electron density corresponding to 
large omitted regions. 

3.1. Data collection and initial phasing by molecular 
replacement 

Crystals of H124L, P117G, P47G staphylococcal 
nuclease were obtained using conditions and methods 
similar to those described by Loll & Lattman (1989). 
This triple mutant crystallizes in the tetragonal space 
group P41, with cell parameters a = b -- 49.18, c = 
63.51 A. 

Data to approximately 1.9 ,~ resolution were collected 
on a Rigaku R-AXIS II C area detector and reduced 
using the R-AXIS data-processing software. 30773 
observations of 10604 independent reflections were 
measured. Rmerg¢(1)* for the resulting data set was 
4.74% [based on all observations where I /a(I)  > 0.0]. 
The data are 94.5% complete to 1.95 ~, resolution and 
90.0% complete in the resolution shell between 2.0 and 
1.95 ,~ resolution. 

The structure was solved by molecular replacement 
using X-PLOR (Briinger, 1992a), using the crystal 
structure of native staphylococcal nuclease (Hynes & 
Fox, 1991) as the search model. The orientation of the 
model was determined by a rotation search followed by 
Patterson correlation refinement and the position of the 
model in the unit cell was determined by a translation 
search. The top peak from the translation search was 10o" 
above the mean, with an R factor of 43.1% (for data 
between 8.0 and 3.5 ,~ resolution) and showed reasonable 
packing interactions with symmetry-related molecules. 
The position and orientation of the model was further 
optimized by rigid-body ref'mement, which brought 
the R factor down to 30.0% (data between 8.0 and 
3.0.~). 

*Rmerge(I) = 100.0 ~ ~lT(h,k,l)-li(h,k,l)l/~ ~ili(h,k,l), 
h , k , l  i ] h o k , l  " 

where the sums are taken over all reflections and over all observations 
of the same reflection. 
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3.2. Preparation of electron-density maps using the 
holographic method 

All of the electron-density maps used for manual 
positioning of the model were obtained using the 
holographic method as implemented by the EDEN 
software package. The factor that places the observed 
structure factors on an absolute scale was found to be 
approximately 1.86, as determined from a Wilson plot of 
the data between 3.0 and 1.95,~,. This estimate is 
generally consistent with the scale factor that was 
calculated by comparing the observed structure factors 
with the structure factors calculated from the model 
(k = 2.07). 

The F(000) term was estimated based on the number 
of each type of atom in the model, and based on the 
estimate that around 44% of the unit cell is occupied by 
the protein. The F(000) term used was 60 157 e. 

Essentially all of the maps used in the course of the 
refinement were prepared in the 'completion' mode, as 
described above. In the final stages of the refinement, we 
made use of a crude solvent mask when using EDEN to 
recover missing electron density. The solvent region was 
defined as starting 3.0,~ away from the protein model 
and this region was assigned an electron density of 
0.33 ~-3. 

It should be noted that many of the electron-density 
maps were calculated using data greater than 7,~, reso- 
lution. In retrospect, this was a mistake, and the recovery 
of the missing density would undoubtedly have bene- 
fited from the information included in the low-resolution 
reflections. 

3.3. Refinement of the staphylococcal nuclease model 

The refinement of the staphylococcal nuclease triple 
mutant was carded out using the X-PLOR versions 3.0 
and 3.1 software packages (Brtinger, 1992a,b) using the 
parameters described by Engh & Huber (1991). The 
refinement, excluding the initial rigid-body refinement, 
was done with approximately 9% of the data omitted for 
future calculations of the free R factor (Brtinger, 1992c). 
During the initial refinement, the individual B factors 
from the native staphylococcal nuclease model were 
retained and the following residues were omitted: 123- 
125, 45-50, 116-118 and 104. The first three of these 
omissions correspond to regions surrounding the three 
residues that differ between native staphylococcal 
nuclease and the triple mutant being refined. Residue 
104 is a valine buried in the core of the protein and is 
therefore expected to be defined by clear electron density 
This residue was omitted as a control. 

A typical round of refinement consisted of the 
following sequence of steps: positional refinement, 
simulated annealing, positional refinement, individual 
atomic B-factor refinement and manual refitting of the 
model using the electron-density maps generated by 
EDEN. In the final stages of the refinement, water 

molecules were added to the model. At the current stage 
of refinement, the staphylococcal nuclease model 
consists of residues 6 through 44 and 51 through 141 
and includes 30 water molecules. The crystallographic R 
factor for this model is 18.0% for the data greater than 
2or(F) and between 6.0 and 1.95,~ resolution, with 
Rrr ~ --25.5%. The root-mean-square deviations from 
ideal bond lengths and angles are 0.010A and 1.55 °, 
respectively. 

3.4. Results of the refinement of H124L, P47G, P l l 7 G  
staphylococcal nuclease 

The structure determination of the H124L, P47G, 
P l l 7 G  staphylococcal nuclease triple mutant was the 
first realistic test of the holographic method's ability to 
recover missing electron density using experimentally 
determined structure-factor amplitudes. Our primary 
concerns were whether we would be able to estimate 
correctly the F(000) term for an experimentally measured 
data set, whether we would be able to place the data 
accurately on an absolute scale, and generally to test 
EDEN's ability to recover electron density based on 
experimentally derived data. 

In practice, EDEN was able to recover the density 
corresponding to the mutated regions of the staphylo- 
coccal nuclease structure well enough to correctly model 
these regions. Figs. 7(a),(b) show some sample electron 
density corresponding to the regions around leucine 124 
and around glycine 117. This map was calculated early in 
the refmement, before either of the two regions was 
modeled. Very little electron density was recovered for 
the region surrounding glycine 47. However, even in 
highly refined models of staphylococcal nuclease this 
region is characterized by poor or non-existent electron 
density. 

3.5. Recovery of parts of the staphylococcal nuclease 
using target functions 

In §2.2, we showed that a large fraction of a protein 
model can be recovered to fairly high accuracy by the use 
of the positivity constraint and, even more, by the use of 
solvent masks. In real proteins, there are no voids; the 
interstices among the molecules are largly filled with 
solvent. The holographic method takes advantage of this 
fact by incorporating solvent targets. As a test of EDEN's 
ability to recover large amounts of electron density, 40 
residues were deleted from the N terminus of the refined 
staphylococcal nuclease model, the model was submitted 
to simulated annealing, and EDEN, with the use of a 
solvent target, was used to recover the electron density 
corresponding to the omitted part of the model. The 
solvent target function was prepared as described in §1.4. 
Shown in Fig. 8 is a sample of the recovered electron 
density. The continuity of the recovered electron density 
is quite good and there is relatively little spurious 
electron density. 
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4. Discussion and concluding remarks 

In macromolecular X.ray crystallography, the electron 
density corresponding to the missing part of a model is 
traditionally recovered by 'omit maps', using the 
difference Fourier method. In paper II, we rederived 
the well known fact that a difference Fourier map, 

computed with unweighted (F o - F c )  coefficients, con- 
tains an equal supersposition of the missing electron 
density and of its holographical dual image (with respect 
to the known part of the protein). The holographic 
method, in contrast, is capable of changing the phases of 
the structure factors. Conseqenfly, if there is sufficient 
additional knowledge or, in other words, if there are 

(a) 

(b) 

Fig. 7. Electron density recovered for (a) 
residues 123-125, and (b) residues 115- 
118 of staphylococcal nuclease. 

Fig. 8. Representative density (residues 16- 
24) recovered for staphylococcal nuclease 
after deleting residues 1-40. The EDEN 
recovery was carded out using a low- 
resolution solvent target. 
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sufficient constraints on the electron density, the 
holographic method is capable of eliminating the dual 
image entirely. An omit map calculated by the 
holographic method has the potential of recovering the 
missing electron density in its entirety with none of the 
dual image. 

We have implemented a fast algorithm for applying 
the holographic method, and we have described some 
preliminary tests to evaluate its potential for use in the 
field of macromolecular X-ray crystallography. Our 
experience with synthetic data calculated from a 
thaumatin model is very promising. The application of 
the holographic method, after deleting regions of the 
thaumatin model, consistently led to an improvement in 
the phases, and a corresponding improvement in the 
electron density recovered for the omitted region of the 
structure. For example, after deleting 60 residues from 
the N terminus of thaumatin (approximately 30% of the 
model), the application of the holographic method led to 
a near-perfect recovery of this region's electron density, 
with a 17 ° average improvement in the phases (Figs. 2 
and 3). Our work with the synthetic thaumatin data also 
demonstrates the power inherent in using knowledge of 
the solvent region. The application of a solvent mask 
dramatically improves the recovery of the electron 
density (Fig. 2). For example, we were able to 
completely recover the electron density corresponding 
to 120 residues deleted from the N terminus of thau- 
matin (-,~ 58% of the protein), with a 27 ° improvement 
in the phases (see Figs. 2 and 4). These results are 
somewhat comparable to those of B6ran & SztJke 
(1995). 

We have also presented the results of tests using 
experimentally derived data. Clearly, working with real 
data presents problems that do not exist when working 
with synthetic data. There are inaccuracies in the 
structure-factor amplitudes and in the 'known' part of 
the structure, as well as potential errors in estimating the 
F(000) term or the scale factor that places the data on an 
absolute scale. Another important difference between 
real crystals and our synthetic models is that in real 
crystals the solvent volume is not empty but instead 
contains an electron density of roughly 0.33,~-3. The 
presence of solvent has several consequences. First, the 
contrast (measured in terms of the difference in average 
electron densities) between the protein and the solvent 
region is decreased by about a factor of three compared 
to the model. Second, the positivity of the electron 
density is not an effective constraint in the solvent 
region. Third, while the structure in the solvent region is 
not as pronounced as in the interior of the protein, it is 
still present. Density variations come from ordered water 
molecules, from the presence of counterions, and from 
the different adherence of the solvent to hydrophilic and 
hydrophobic residues. The electron density of a crystal 
that is truly based on experiment should have all of these 
features. 

Our experience with experimentally measured diffrac- 
tion data from a mutant of staphylococcal nuclease was 
encouraging. We were successfully able to refine the 
structure of this triple mutant using EDEN to calculate all 
of the electron-density maps. While this was a relatively 
simple exercise, it confirmed what was suggested by our 
experience with the synthetic thaumatin data: that the 
holographic method, as implemented by EDEN, is robust 
enough to work with the inaccuracies of real data and 
real models. These results also show that we are able to 
estimate the F(000) term and the scale factor accurately 
enough to recover meaningful electron density. 

The holographic method readily lends itself to the 
incorporation of a solvent mask and, more generally, to 
restraining the electron density of specific regions of the 
unit cell to specified values. This ability to 'suggest' 
electron density can be applied to regions of suspected 
solvent or to parts of the crystal that are particularly well 
known. We have illustrated the use of a solvent target 
using the experimental data from the staphylococcal 
nuclease mutant. Specifically, we used a target solvent 
function to aid in the recovery of electron density 
corresponding to 40 residues that were deleted from the 
N terminus of the staphylococcal nuclease model. 
Although this example is somewhat contrived, in the 
sense that it assumed a priori knowledge of the solvent 
region, it clearly illustrates the power of the solvent target 
function. 

To conclude, we would like to mention an unsolved 
problem and sketch some of the directions we plan to 
take in the near future. A major unsolved problem is the 
absence of a good overall measure of the quality of the 
recovered electron density. In our studies of synthetic 
data, we found that our crystallographic R factor does not 
correlate well with the quality of the recovered density, 
as measured by A~0 and Ap [(18) and (19)]. Other 
measures of the correlation between Fob s and F~e fare no 
better. (Of course, A~0 and Ap cannot be applied to real 
proteins.) Moreover, when the grid resolution is 
increased with respect to the data resolution, EDEN 
readily reduces the cost function, ftotal, in (12) to near 
zero even though the electron density may be mean- 
ingless. One possibility is that the R factor is decreased 
by trading off the correctness of the electron density in 
the volume of the protein with that of the solvent region. 
While the free R factor (Briinger, 1992c) may be of 
greater reliability, it would be extremely valuable to find 
a simple, reliable and automatic way to evaluate the 
quality of electron-density maps. 

Several additions will be made in our implementation 
of the holographic method. First, the quadratic term that 
was neglected in (4) will be added. This should allow us 
to set all the weights in (7) to unity and to use our 
algorithm for phase extension, i.e. to recover the protein 
structure at successively higher resolutions. Also, since 
we suspect that a major source of the remaining error in 
the electron-density recovery is the tendency of the 
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algorithm to pull the electron density towards the grid 
points (§2.1), the quadratic term, by allowing us to use 
higher gridding resolution (at a given data resolution), 
should lead to a more accurate recovery. We also plan to 
implement an algorithm for multiple isomorphous 
replacement (MIR). While the traditional MIR algorithm 
is equivalent, in principle, to its holographic version (see 
paper II), the incorporation of positivity constraints and 
the possibility of using solvent 'targets' make our 
algorithm sufficiently different to be worth exploring. 
One promising avenue is to use MIR phases as a starting 
point for the holographic algorithm. Finally, the manner 
in which EDEN solves for electron density lends itself to 
the incorporation of additional constraints on the 
recovered electron density. This should allow us to make 
use of any non-crystallographic symmetry that might be 
present in the asymmetric unit. In addition, we will 
attempt to incorporate chemical knowledge in the form of 
partial molecular models, to be automatically fitted into 
the electron density. 
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APPENDICES 

In these Appendices, the program EDEN is described. 
This is followed by some information on space groups 
and symmetry, intermediate file formats, auxiliary 
programs and other computational issues. The programs 
are copyright © of the Regents of the University of 
California. Enquiries about the programs should be 
directed to the authors (e-mail address szoke2@llnl.gov). 

A1. Description of EDEN 

The program EDEN is discussed below in terms of 
initializations and four aspects of the outer loop that 
solves the linearized holographic equation: set-up of 
arrays; the inner loop that minimizes the cost function; 
reports and output of the current solution; checks to 
determine outer-loop continuation. 

Initializations 

Parameters. There are about 30 input parameters, 
including: unit-cell parameters (a, b, c, angles and 
symmetry group); file information (names of .fobs and 
.fcalc files, as well as names of files containing physical 
space models, targets, weights and masks); computa- 

tional parameters [grid spacing, data resolution for 
reading data, values for 77 and for 8 in (9), limiting 
crystallographic R value, Lagrange multipliers, criteria 
for quitting the conjugate-gradient solver and a factor for 
scaling the .fobs to the .fcalc values]. 

Arrays in physical space. All of these are generally 
identified on a double grid: a simple plus a body-centered 
grid. The electron/voxel arrays are: the known model, 
np,k~own; the electrons found in a particular outer-loop 
iteration, np; and the total electrons found in all outer- 
loop iterations, np,su m. At the start of the run, np and 
np,so~ are initialized to zero, while np,known is set equal to 
the known input model (in correction mode) or to 0 
(completion mode). There are also arrays required by the 
solver, including predetermined minima and maxima for 
the solver limit, and np.tyr~, characterizing the permitted 
changes in the electron density at each point in space. 
At the start of the EDEN run, np.min =--np,  known, 
np.ma x = (a large number) and np.tyr~ = 'bounded'. 
Wherever a mask is in effect, np,typ~ = 'fixed' (which 
precludes the accumulation of np). ff 2spa~ is non-zero, 
np,target and ~,p are also read in for use according to (10). 

Arrays in reciprocal space. These include F(h), read 
from the .fobs file, scaled to the model, if necessary, and 
apodized according to (9) to yield F'(h), and R0(h ) 
(complex), read from the .fcalc file. R 0 is the initial value 
of R, corresponding to (1). If the model from which R 0 is 
derived is of higher resolution than is needed for the 
recovery (i.e. the grid resolution), an appropriate 
apodization, 8~c, is applied to R 0. Both of these files 
must have an F(000) term, whose value is the total 
number of electrons and the number of electrons in the 
known part of the unit cell, respectively. Both F(000) 
terms include all appropriate solvent electrons. The 
symmetry-forbidden (h) terms are explicitly set to 0 in 
F'(h). Only those R0(h ) for which there is a correspond- 
ing F'(h) are used in EDEN. See also Appendix A2, 
below. Other arrays set up for use in the FFT's are 
exponential factors efac(h) def'med below [(A4)] and a 
crystallographic weight factor Wcrys(h) that is 0.5 for the 
F(000) term and 1.0 for all other terms (in a Pl-expanded 
set of structure factors). However, to simplify the 
equations below, we shall assume that a crystallographic 
weight factor has already been included in w(h), defined 
in (8). 

FFT initializations. We have used the routine cfft99 
from Cray Research (written by Clive Temperton, 
ECMWF, 11/78, revised by Russ Rew, 9/80 and Dave 
Fulker, 11/80). 

Set up of  arrays 

At the start of each outer-loop iteration, the current 
value of R(h) is recalculated, using the sum of R0(h ) and 
the properly apodized Fourier transform of np,su m. R(h) is 
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written as the current most complete reciprocal-space 
model. For the following discussion, it is useful to 
combine (13), (16) and (7) into the following form: 

f~e, = 1/2 ~ w(h)2{2Re[R exp*(h)DFT+(np)] 
h 

- Hdiff(h)} 2 , (A1) 

where the variable R exp(h) is defined as 

R exp(h) = efac*(h)R(h)/[IF'(h)l 4- IR(h)l] (32) 

Hdiff(h) = [ IF ' (h)[ -  [R(h)l]. (A3) 

w(h) is defined in (8) [but includes the crystallographic 
weight factor, Wcrys(h)] and 

efac(h) = exp[--O(rrArl.~rhl)E]exp[2rri off(h)]. (A4) 

The offset array, off(h), is 0 for a simple grid and for the 
simple part of a body-centered grid. For the intercalating 
part of a body-centered grid, 

off(h) = 1/2(h/P a + k/P b + l/Pc). (A5) 

It is clear from this formulation that the arrays R exp(h) 
and Hdiff(h ) may be updated prior to the inner-loop 
iteration, leaving only np as the variable array. 

Inner loop, minimizing the cost function 

The linearized conjugate-gradient solver, lgetsol, 
searches the solution space for a minimum. Each time 
a step is taken in solution space, producing a new set of 
np, lgetsol calls an EDEN-specific function. This, the 
heart of EDEN, does the FFT's to compute the 
components of the cost function fed~, from (A1) and 
calculates fspace from (10). [The fnun term of (11) was 
explored in an earlier version of EDEN and is not 
currently in the program.] 

The gradients of the current solution are also required 
by the solver. For this purpose, it is useful to wri tefede n in 
yet another form: 

feden = 1/2 )-'~[w(h)Er(h)2], (36) 
h 

where 

r(h) = [R*(h)efac(h)DFT +(nt, ) 

+ R(h)efac*(h)DFT-(np)]/[IF'(h)l + IR(h)l] 

-IF'(h)l 4-IR(h)l. (37) 

Using the fact that the derivative of DFT+(np) with 
respect to a particular np is exp[2zrih • Xp], where Xp is the 
fractional coordinate of the point p in the unit cell, we get 

dr(h)/dnp = {R*(h)efac(h) exp[2m]l • Xp] 

4- R(h)efac*(h)exp[-2m]!. Xp] 

x IF'(h)l 4- IR(h)1-1 } (A8) 

and from this, the full gradient offede n, geden is 

gCd,. = 2Re(DFT- {[w(h)2r(h)R(h)efac *(h)] 

x [IF'(h)l + IR(h)l]-l}), (A9) 

or, more concisely from (A2), 

geden = 2Re{DFT-[w(h) 2R exp(h)r(h)]}. (A10) 

From (10), we have the gradient of f space : 

P 
gspace = ~'spaee 2P ~ ~v2(np  - -  np,target)- (A l l )  

p=l 

The full gradient is geden + gspace" From among a large 
variety of possible conditions for stoppLng, the con- 
jugate-gradient solver most commonly quits because the 
gradient in solution space has gone down sufficiently. 
(This condition is not mentioned by Goodman, Johans- 
son & Lawrence, 1993.) Typically, the criterion is that 
the gradient has gone down by two orders of magnitude. 
Other causes for stopping the search are that the cost 
function has fallen enough during this call to the solver 
or that lgetsol determines that it has reached a minimum. 

Reports and output of current solution 

On returning from the solver, EDEN interprets return 
codes and monitors the progress of the cost function. The 
array np,su m is updated by adding in np, the electrons 
found in the iteration just completed, while np,mi n is 
updated by subtracting np from it (thus enabling the 
solver to correct for overshoot). EDEN writes the sum of 
np,know n and np, sum. It also calculates the structure factors 
corresponding to the present solution and recalculates 
and reports the crystallographic R factor as well as other 
figures of merit. 

Checks to determine loop continuation 

After each inner-loop completion, EDEN decides 
whether to continue iterating or to terminate. The usual 
condition that causes EDEN to terminate is that the cost 
function is 'stuck' (it does not decrease over five 
iterations). It is also common for a user to terminate 
EDEN by force if current figures of merit suggests that it 
is not progressing, EDEN quits gracefully. In some cases, 
EDEN terminates if the crystallographic R factor has 
fallen below an input value, Rstop (typically 3% but 
subject to change as an input parameter). Other 
terminating conditions have been built into EDEN but 
are not encountered in practice. These include: the 
conjugate-gradient solver returns an error condition; a 
maximum of 50 outer-loop iterations has been completed 
(typically there are 5-15 outer-loop iterations). In trivial 
test problems only, EDEN terminates when the residual 
set of electrons/voxel recovered in an iteration is 
essentially zero. 



JOHN R. SOMOZA et al. 707 

A2. Symmetry and space groups 

The space groups supported by EDEN are P1, P2 l, 
P212121, P41 and P43. It would require only a small 
effort to extend this set to include all but the hexagonal 
and trigonal crystal systems. The unit cell need not be 
orthorhombic, although large deviations from angles of 
90 ° will affect the shape of the Gaussian basis functions 
significantly. 

In order to enforce and preserve crystallographic 
symmetry during the operation of EDEN, the following 
procedures are observed: the minimum region of 
reciprocal space is read into the program; an octant for 
P212121, P41 and P43; a quadrant for P21 and a half- 
sphere for P1, with the requisite edges. The set of 
structure factors is expanded to the half-sphere, using the 
appropriate symmetry relations. When reading the 
experimental structure factors, symmetry-related hard 
zeros are added to the data, where appropriate. With 
regard to model structure factors, only those values 
of (hid) for which there are experimental readings are 
used. 

Calculations are carded out for the full unit cell. 
Whenever electron densities are read in or recalculated, 
the resulting array is 'symmetrized' by averaging over 
equivalent points in the asymmetric units. Such 
averaging should not be necessary and any significant 
deviations of the symmetrized from the incoming values 
are thus reported as warning messages. Both in theory 
and in practice, asymmetric density values are the (rare) 
consequences of numerical instabilities. However, the 
check is useful for highlighting gross anomalies, such 
as garbage data in files, for example. At present, 
non-crystallographic symmetry is not included in 
EDEN. 

A3. Intermediate file structure 

It is only REGRID that converts electron densities to the 
output format of X-PLOR (the so-called .sol files). All 
other electron-density maps in physical space are stored 
as binary data in a format designed for use with the signal 
processing program, VIEW (Brase, Miller & Wieting, 
1988). The purpose of this usage is (a) to retain the 
compactness and precision of binary data and (b), more 
importantly, to enable the analysis and display of data 
using this program. Some of the capabilities of VIEW that 
have been exploited in our holographic method studies 
are: clipping and thresholding; searching for peaks; 
comparing density maps; performing statistical analysis 
of maps. Parts of the unit cell are visualized by 'slicing' 
the cell perpendicular to an axis (typically the c axis) and 
displaying the slices, using false color to indicate density 
at each position. While these display methods are much 
less sophisticated than those of FRODO, for example, 
they do enable quantitative analysis of electron densities: 
there are no 'chicken wire' cutoffs and actual (non- 

negative) electron densities, in units of electrons/voxel 
or, after REGRID, in units of,~-3, may be read off at any 
point within the unit cell. 

A4. Auxiliary programs 

There are a number of auxiliary programs used in 
conjunction with EDEN. ADD adds or subtracts 
comparable entries in two reciprocal-space model files. 
APODIZE supplies the best-fit slope of log(F 2) vs 
(1/ARE), using either experimental diffraction intensities 
or reciprocal-space model data. This is similar to a 
Wilson plot but does not use atomic scattering factors. 
BACK converts a reciprocal-space model into a best-fit 
physical space model in electrons/voxel using (17). 
DPHASE finds the average phase differences between 
two reciprocal-space models by (18). DRHO calculates 
the variance between two sets of VIEW electron/voxel 
data by (19). FORTH transforms electron/voxel data into 
reciprocal space, inverting the effect of BACK. REGRID 
converts data in electrons/voxel to A-3 and spreads data 
onto a finer grid. It also uses FFTs. 

A5. Computational issues 

Although higher-level code in EDEN and the auxiliary 
programs is written in C, some of the critical underlying 
code (lgetsol, cost-function calculations, the F ~ ' s )  is all 
Fortran. The programs have been run on a variety of 
platforms, including SGI Iris and Indigo, IBM 6000 and 
HP 9000 machines. On the SGI Iris, EDEN typically runs 
for 15 min to 2 h, depending on the gridding resolution; 
BACK and REGRID run for a few minutes each. Other 
utilities are completed within a minute. The IBM 6000 
and HP 9000 machines are typically four times faster 
than the older SGI Iris. In all practical cases, about 80% 
of running time is spent on the FVr routine. Regridding 
large electron density maps or using a fine regrid factor 
(4 rather than 2) may cause REGRID to encounter 
memory problems. These are circumvented by handling 
the unit cell on a piecewise basis, producing two ore 
more X-PLOR .sol files for successive sections of the unit 
cell. 
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Abstract 

Unitarity, a fundamental principle of scattering theory, 
leads to the prediction of an essentially unique set of 
phases for the scattering amplitude from a complete 
knowledge of the differential cross section or, in the case 
of a crystal, from the diffracted intensities. The Sayre 
equation and all the direct methods of phasing following 
therefrom are derived as a special case of unitarity for 
zero excitation error. Dynamical and kinematical scatter- 
ijag are considered, and the relationship between them, 
S = exp(irnzK), is obtained. Applications to the case of 
electron diffraction including for non-zero excitation 
error are discussed. 

Introduction 
When diffraction was first used to calculate molecular 
structures, it was realized that in addition to the 
intensities, which were directly measured, phases had 
to be determined for each of the reflections. Many 
schemes were devised to ascertain these phases, such as 
comparing isomorphous crystals, one of which had one 
or more heavy atoms that were lacking in the other, or 
looking at an unknown molecule which had as part of its 
structure a molecule whose structure was already known 
(Argos & Rossmann, 1980). These methods were very 
successful; however, not all materials of interest could be 
crystallized with and without heavy atoms or described 
by a known part plus an unknown part. 

An alternative procedure is the derivation of the phases 
from the values of the measured intensifies. All such 

techniques of using the known intensities to provide 
information about the unknown phases are collected 
under the category of direct methods of phase determina- 
tion. Many of these methods are based on an equation 
first derived by Sayre (1952), who calculated the 
diffraction amplitudes of an arrangement of equal non- 
overlapping atoms and of the same arrangement of 
'squared atoms'. By comparing the Fourier expansions of 
these two expressions, he was able to relate one (phased) 
amplitude to a convolution of all other (phased) 
amplitudes: 

F(H) -- (O/V))-~ F(K)F(H - K), (1) 
K 

where H and K are sets of Miller indices, F is the 
complex amplitude, V is the unit-cell volume and 0 is a 
constant of proportionality. 

Direct methods of phasing diffraction patterns have 
been used very successfully in ab initio structure 
solutions in both X-ray (Ladd & Palmer, 1980; Day & 
Pendry, 1993; Glusker, 1993) and electron crystal- 
lography (Dorset, 1993; Dorset, Tivol & Turner, 1991, 
1992, 1993). Phase extension, where initially the low- 
order phases are determined by some means and direct 
methods are used to relate the higher-order phases to the 
low-order ones, have also been quite successful (Dorset, 
1993; Dorset, Kopp, Fryer & Tivol, 1995). 

It has been stated many times that the phases can be 
extracted from the measured intensities because the 
electron density is everywhere positive and the unit cell 
of a crystal consists of equal non-overlapping point-like 
atoms. It is also stated that the fact that the atoms are not 
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